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1 Current knowledge of vehicle and crew scheduling problem

Vehicle scheduling is the task of assigning vehicles to efficiently cover all trips within a timetable.

Similarly, crew scheduling assigns the crew to efficiently cover all the operating vehicles. Vehicle and

crew scheduling are widely studied problems having many subsequent solutions found. The problem

of minimizing the number of vehicles needed to satisfy the timetable schedule can be solved for

example by set covering or graph coloring, maximum flow and many more.

The problem of minimizing the crew is generally more algorithmically demanding than basic vehicle

scheduling. The reasons behind higher computational complexity of crew scheduling are further

constraints posed on the crew schedules. These constraints are typically based on legal regulations,

collective bargaining agreements, and on vacation schedules of the crew. Higher computational

complexity of crew scheduling creates the necessity to apply heuristics to obtain the solution in

reasonable time for large sized problems.

Public transportation in the Czech Republic at the time of creation of crucial parts of this work

faced lack of vehicles, and especially lack of crew members, see SDP ČR (2018). Moreover, crew

salary and costs of vehicle usage are the main cost items of a public transport company, as per Pels

and Rietveld (2000). Even the transport companies that already use software for solving vehicle

and crew scheduling tasks call for further possibilities to lower the number of vehicles and crew

necessary. Therefore, we investigate novel possibilities of scheduling optimizations, focusing on

lowering the amount of vehicles and crew. Even with covid 19 disease impacting public transport

it is advantageous to use the scheduling optimization, not only from the perspective of stepping up

the efficiency of used vehicles and crew members, but also from the perspective of risk management,

especially if some of the crew members get infected with covid 19 or are quarantined.

In the following section, we define the vehicle and crew scheduling problems, and we share the

relevant results. The general overview on vehicle scheduling is inspired by Daduna and Paixão

(1995) and Bunte and Kliewer (2009) and overview on crew scheduling by Wren and Rousseau

(1995) and Ciancio et al. (2018).

1.1 Vehicle scheduling

Based on the given timetabled trips with stop arrival and departure times defined, as well as start and

end locations, the objective of vehicle scheduling problem is to assign the trips to vehicles, satisfying

the following requirements:

• each trip is assigned to exactly one vehicle

• feasibility of sequence of trips that each vehicle performs has to be assured
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• according to the upfront selected objective function, minimization problem needs to be solved

• further technical and company restrictions have to be respected

Generally, the objective function is a cost function. We can differentiate the costs posed on vehicle

to fixed cost and operational costs. Fixed cost mostly comprise of the initial investment and main-

tenance, operational costs comprise of cost of fuel and attrition. For operational costs, the aim is to

minimize the non-productive time and distance.

First three points in the problem description define a basic vehicle scheduling problem, while the

fourth point allows the problem to be extended by additional requirements. The typical extension

is for multiple depots, or multiple vehicle types, see Costa, Branco, and Paixão (1995) or Guedes

and Borenstein (2018). Also, restriction on number of bus line changes in vehicle routes may be

posed, see Kliewer, Gintner, and Suhl (2006). In other extensions, variable departure times of trips

are allowed within a specified time window, allowing for slight changes in the originally timetabled

data, see for example Daduna, Mojsilovic, and Schautze (1993), Desaulniers, Lavigne, and Soumis

(1998), Schmid and Ehmke (2015), Desfontaines and Desaulniers (2018), time windows along with

close trips aggregation is considered in Visentini et al. (2019), or the requirement is posed to use

fixed number of vehicles, see Paixão and Branco (1988). Vehicle charging is considered within

vehicle scheduling and charging optimization for a bus fleet containing also electric buses in Zhou

et al. (2020).

Vehicle scheduling problem for single depot

Vehicle scheduling problem for single depot is comparatively the easiest of vehicle scheduling prob-

lems, as it can be formulated as a problem for which polynomial time algorithm is known. In the

following text we briefly introduce the models used to solve the vehicle scheduling problem.

First optimal solution for the vehicle scheduling problem was provided in Saha (1972) using minimal

decomposition model. Such model restrains from using dead-heading trips, therefore Bodin and

Rosen (1976) solves the minimal decomposition model with dead-heading. Generally, by minimal

decomposition we can solve the problem of minimum fleet size, but it is unable to take into account

the vehicle operational costs.

Both fleet size and vehicle operational costs are considered within objective function in assignment

model by Orloff (1976) as well as quasi-assignment model by Gavish and Shlifer (1978), where

bipartite graphs are used for modeling the schedules. Later, network flow model was introduced by

Bodin, Golden, et al. (1983), where minimum cost flow problem needs to be solved.

With the knowledge of vehicle load profiles, case study by Tang et al. (2018) adjusts a few trips to

operate by limited stop strategy, short turn or dead-heading, in order to further lower the number of
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necessary vehicles. Further overview and future research paths of vehicle scheduling optimization

methods which use automated data collected from intelligent transportation systems is provided in

Iliopoulou and Kepaptsoglou (2019).

Another approach to vehicle scheduling optimization along with timetabling is consideration of the

passenger waiting costs, see Shang et al. (2019). For periodic timetables, problem of joint optimiza-

tion of the timetable and the vehicle schedule is considered in Van Lieshout (2021).

Vehicle scheduling problem for multiple depots

Within multi-depot vehicle scheduling, the vehicles are housed in several depots, and a vehicle sched-

ule must start and end at the same depot. Unlike single depot vehicle scheduling, multiple depot ve-

hicle scheduling is proven to be NP-hard, see Bertossi, Carraresi, and Gallo (1987). Several heuris-

tics have been proposed, see for example Bodin, Rosenfield, and Kydes (1978), Lamatsch (1992),

Mesquita and Paixão (1992).

To solve the multiple depots vehicle scheduling to optimality, branch and bound algorithm was used

for computation of lower bounds by an additive procedure in Carpaneto et al. (1989). Later, integer

multi-commodity flow formulation of the problem was proposed by Ribeiro and Soumis (1991),

which is solved by column generation algorithm. In Oukil et al. (2007), stabilized column generation

approach is proposed, which handles efficiently even highly degenerate problems.

To be able to account for diversity of traffic and driving conditions, dynamic vehicle rescheduling

algorithms appear in Shen, Zeng, and Wu (2017), aiming to maximize the execution of the originally

planned schedule.

1.2 Crew scheduling

Crew scheduling is constructing the crew duties to cover all the blocks within vehicle schedules in

a cost effective way. The vehicle blocks can be divided into several pieces of work which start and

end at predefined relief points. Crew duty consists of consecutive pieces of work which are mutually

feasible. Even though a driver can change between different vehicles, unnecessary changes of vehicle

blocks lead to inefficiencies.

Rules that apply to crew scheduling are specific to given country based on legal regulations. Rules are

also posed within organizations by the collective bargaining agreements of the labor unions, by crew

bids and vacation schedules. Sometimes we need to take into account also different qualification and

licensing of the crew members. Typical restrictions are posed on the total working time as well as

6



total spreadover, which is the duration between start and end of a duty. Also, there is a maximal

length of working time without provisioning of a meal break.

Crew scheduling problem is mostly solved by the framework of set covering, set partitioning, and

multiobjective models. Even satisfying the basic requirements makes crew scheduling to be NP-

hard. Therefore, several heuristics were proposed, using for example genetic algorithms in Song et

al. (2015) or tabu search in Cavique, Rego, and Themido (1999). Exact methods exist, solving crew

scheduling to optimality. Most of them are using column generation, see Desrochers and François

(1989), or branch and bound algorithms, see Barnhart et al. (1998).

Algorithms solving for both vehicle and crew scheduling appear recently in Horváth and Kis (2017),

Boyer, Ibarra-Rojas, and Rı́os-Solı́s (2018) and Ciancio et al. (2018), optimizing the collective ob-

jective function for the combined problem.

Within Czech and Slovak republic, the mutual interconnection between crew and vehicles are very

tight. Usually, one vehicle is operated by one crew member or at most two crew members. This

requirement together with legal obligations and collective bargaining agreements constraints typical

for Czech and Slovak republic is satisfied by vehicle and crew scheduling system Kastor by Palúch

and Majer (2017).

1.3 Current state analysis, focused on goal specification

Similarly as in Tang et al. (2018), we aim to adjust few trips within the timetable in order to lower

the number of vehicles needed to cover the timetable. We look comprehensively at the combination

of timetabling along with vehicle scheduling, aiming to identify the minimal set of trips, such that

omitting them from the vehicle scheduling problem lowers the amount of vehicles necessary to cover

the timetable. Let us denote such trips as critical trips. For more rigorous problem definition using

graph theory, refer to section 3.

Figure 1 shows for each time moment both the amount of timetables trips and the amount of vehicles

necessary to cover the trips. In figure 1 we can observe that due to the death-running between the

end of previous trip and start of the next trip, the maximal vehicle usage occurs during the second

peak at 14:30, having only 74 consecutive trips, opposed to morning peak with 79 consecutive trips.

As per figure 1, peak at 7:48 can be covered by 88 vehicles, whereas there are 90 vehicles necessary

to cover the peak at 14:30.

Using figure 1, we identified the peak in vehicle usage. However, based on the information from

figure 1, it is very demanding to perform critical trips identification. Therefore we seek for a system-

atic approach for critical trips identification, using graph theory. Our approach, along with basics of

graph theory, is described within next sections.
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Figure 1: Number of trips and vehicles necessary to cover the timetable1

1Data source: weekday timetable of public transport company of Liberec and Jablonec nad Nisou

When the critical trips are identified, we need to remove them from the vehicle scheduling problem

and handle them in a different way. Therefore, we propose several methods of critical trips handling.

For selected handling method, we propose metrics to evaluate critical trips and select the most feasi-

ble ones for handling based on the metrics value, in order to fasten decision making process. We then

analyze the impact of critical trips identification and handling on the efficiency of vehicle and crew

utilization within public transport company via a case study conducted on a selected public transport

company.

Due to the different possibilities of critical trips handling, in some cases it is more cost effective

to handle critical trips with overall shortest run time, rather than minimum amount of critical trips.

Therefore, we aim to provide both alternatives of critical trips.

2 Objective

The vision of usage of this work is efficiency step up of resources within public transport companies.

We aim to achieve it by lowering the amount of necessary vehicles, and possibly drivers. The idea of

achieving the goal is based on the fact, that reasonably small amount of trips within a timetable can

be shortened, or departure times can be shifted within acceptable range. Sometimes, few trips can be

even dropped out of the vehicle scheduling if it leads to lowering the number of vehicles needed to

cover the updated timetable.
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The main objective of this work is to design an algorithm for critical trips identification, i. e. for

identification of the minimal set of trips, such that omitting them from the vehicle scheduling problem

lowers the amount of vehicles necessary to cover the timetable.

We also aim to provide meaningful number of alternative critical trips, in order to be able to choose

the best alternative for further handling.

To step up the usability and usage of such algorithm, we also consider subsequent objectives:

• Algorithm for identification of the set of trips with overall shortest run time, such that omitting

them from the vehicle scheduling problem lowers the amount of vehicles necessary to cover

the timetable.

• Proposition of methods for critical trips evaluation and handling.

• Analysis of impact of critical trips identification and handling on the efficiency of vehicle and

crew utilization via a case study conducted on a selected public transport company.

The benefits of critical trips identification and handling is not only the straightforward lowering of

the number of vehicles and crew members needed to cover the timetable, but also increasing the

efficiency of the used vehicles and crew, as there is an amount of work which would have been

otherwise covered by unused vehicles, which gets distributed amongst the lower number of used

vehicles and crew. Also, knowledge of critical set of trips can be used as an iterative optimization

loop between the processes of timetabling and vehicle scheduling, as it can give a quick feedback on

the impact of a change in timetabled data.

3 Methods and solution approaches

Having analyzed current knowledge in the field of vehicle and crew scheduling and identified a gap

within current knowledge, we defined goals of the dissertation, mainly critical trips identification

and handling. In this section we provide the methods of achieving the goals, as well as the solution

approaches. Our approach to the problem of lowering the number of vehicles and crew members

is based primarily on graph theory. First, we model the problem using graphs, then we perform

necessary transformations in order to solve the original problem, ideally by using analogical graph

theory problem with known solution. We then propose methods for critical trips evaluation and

handling. We conclude by a case study, which analyzes impact of critical trips identification and

handling on the efficiency of vehicle and crew utilization within selected public transport company.
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3.1 Basics of graph theory

To be able to define the fundamental problem, we first give a basic overview on specific segments

of graph theory. We guide the reader through the definitions of directed and oriented graph. For a

comprehensive overview of graph theory and its applications see Gross and Yellen (2005).

Directed graph is an ordered pair G = (V,E), where V is a finite set of vertices and E ⊆ V × V
is a set of edges. In a directed graph, the direction of the edge is essential, we say that the edge

[v1, v2] leads from vertex v1 to v2. Oriented graph is a special case of directed graph, in which each

pair of vertices can be connected by at most one edge. Therefore, in oriented graphs do not exist

bi-directional edges. Path in a graph is a sequence of edges directed in the same direction which

connect a sequence of mutually distinct vertices. Several optimization methods using graph theory

have been applied for vehicle scheduling optimization, for overview see section 1.

Using the above defined notion, let us define the fundamental problem for critical trips identification

by modelling it using graph theory. Having a set of trips to cover, we define an oriented graph in

which the vertices represent the trips. An edge of length 1 from vertex v to vertex w exists if the trip

w can be serviced after the trip v by the same vehicle, i.e. if the time of death running from final

station of trip v to the first station of the trip w is shorter than the break time between end of v and

start of w. Figure 2 shows an example such graph, containing 8 trips.

t1

t2

t3

t4

t5

t6

t7

t8

time

Figure 2: Graph for searching the set of longest disjoint paths2

2Created by the author

Let m denote the minimal number of vehicles necessary to cover the timetable, which can be found

by algorithm from Palúch (2001). For each k ∈ N, k < m, find m − k disjoint paths within the

above defined graph with the maximum sum of lengths. Then the trips which aren’t for given k

included in any of the disjoint paths are the desired critical trips to be omitted in order to cover
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the timetable by m − k vehicles. There is no general solution for set of longest disjoint paths

problem. Therefore, our main goal is to transform the problem into a problem with known solution

and polynomial complexity.

3.2 Genetic algorithms

Genetic algorithms, see Deepa and Sivanandam (2010), are adaptive heuristic search algorithm in-

spired by evolution and the law of natural selection and genetics. The basic concept of genetic

algorithms is designed to simulate processes necessary for evolution, specifically those that follow

the principle of survival of the fittest. Genetic algorithms are used to generate solutions to optimiza-

tion problems by relying on biologically inspired operators such as mutation, crossover and selection.

For the purposes of this work, we focus specifically on crossover operator. Crossover operator cre-

ates offspring out of a combination of genetic information of at least two parents. Such offspring

then combines characteristics of both of its parents. Therefore, crossover operator provides a way to

generate new solutions from the existing ones.

3.3 Case study

A case study (Yin, 2017) is a detailed study of a specific subject, which is conducted in order to better

understand given phenomenon. There are multiple different possibilities of conducting a case study,

and its settings and parameters differ mainly based on the field in which it is used, and on its goal.

Case study starts with introduction which describes scope and purpose of the study, i. e. the goal.

Next, we describe the methods used, and discuss main findings. In our case, discussion will be

covering implementation of the proposed method in the real world context. We conlude by summary

of our findings.

Having the results of a case study in hand, we always need to bear in mind that a single case result

may be caused by random disturbance or error.

3.4 Critical trips identification

Outputs of vehicle scheduling are blocks of trips to be covered by the minimal number of vehiclesm.

If some of these blocks are very small, containing for instance only 1 trip, it is questionable whether

it is efficient to cover them by a vehicle. Especially if the transport company is running short on

vehicles, cancellation, outsourcing or some other handling possibility of the minimal block can be

considered. The goal is to cover the timetable by m blocks, while minimizing the size of the last

block, or minimizing the overall size of the last k blocks.
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Therefore, we define an oriented graph in which the vertices represent the trips and an edge of length

1 from vertex v to vertex w exists if the trip w can be serviced after the trip v by the same vehicle,

i.e. if the time of death running from final station of trip v to the first station of the trip w is shorter

than the break time between end of v and start of w. Figure 2 shows an example graph containing 8

trips.

If we findm−1, orm−k disjoint paths within this graph with the maximum sum of lengths, then the

trips which aren’t included in any of the disjoint paths are the desired critical trips. In the following

section, we will transform this problem into the shortest disjoint path problem. Following algorithms

were published in Pastirčáková and Šulc (2018).

3.4.1 Transformation into shortest disjoint path problem

When modelling the problem using graph theory, we need to ensure that each trip is covered by a

vehicle at most once. Therefore we define graph G within which each trip is represented as a triple

of input vertex t, output vertex t′ and an edge from t to t′. Both vertices t, t′ and the edge [t, t′] are

uniquely identifying one specific trip, we refer to the trip itself also by t. Let us denote time(t) the

starting time of the trip t, and time(t′) the ending time of the trip t. For all trips t let us assign the

cost of edge [t, t′] equal to time(t′)− time(t)− 1. An edge from output vertex t′ to input vertex u

exists if the trip u can be serviced after the trip t by the same vehicle. The cost of such edge will be

the timespan time(u)− time(t′), i. e. the timespan between the end of trip t and the start of trip u.

s n

t1 t′1

t2 t′2

t3 t′3

t4 t′4

t′1−t1−1

cost = t1 − s

cost = n− t′4

cost = t3 − t′1

time

Figure 3: Graph for the shortest disjoint path problem3

3Created by the author

We define a sink n such that time(n) > time(t′) ∀ trip t. Then for each trip t we create an edge
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from t′ to n with cost time(n) − time(t′). Similarly, we define a source s such that time(s) <

time(t) ∀ trip t. Then for each trip t we create an edge from s to t with cost time(t) − time(s).
Figure 3 shows an example of graph G containing 4 trips.

Having graphG, we solve the shortest disjoint path problem by Bhandari algorithm (Bhandari, 1999),

which iteratively finds the i overall shortest disjoint paths for each i ≤ m, i.e. the i longest blocks

covering the highest possible number of trips by i vehicles. Providing such results as a feedback

to the planners, they can quickly decide which number of shortest blocks to get rid of, i. e. what

is the desired reduction k of the number of necessary vehicles. Within algorithm 1, we outline in

pseudocode the usage of Bhandari algorithm for critical trips identification.

G1 := G;

i := 0;

while exists a vertex in G not included in i shortest disjoint paths do
i := i+ 1;

Within the graph Gi find shortest path pi from s to n, using any algorithm allowing for the

negative edge costs;

Form graph Gi+1 from Gi by turning all the edges of the path pi in the opposite direction and

assign them inverse costs;

The i shortest disjoint paths s(i)1 , s
(i)
2 , . . . s

(i)
i are formed by the paths p1, p2, . . . pi, where all

the pairs of edge and inverse edge within these paths cancel themselves out and are not

included in the final i disjoint paths s(i)1 , s
(i)
2 , . . . s

(i)
i ;

The i-th set of critical trips C(i) is formed by all the trips t whose input vertex t is not included

in the i shortest disjoint paths s(i)1 , s
(i)
2 , . . . s

(i)
i ;

end
Algorithm 1: Critical trips identification

Algorithm 1 can be modified to obtain critical trips of minimal sum of lengths by changing the costs

of the trips to 0 within graph G, i. e. setting for each trip t the cost of edge [t, t′] equal to 0.

3.4.2 Target value for reduction in the amount of necessary vehicles

Even though algorithm 1 yields specific set of critical trips, its main strength lies in quick evaluation

of the target value for reduction in the amount of necessary vehicles. Let m be the minimal number

of vehicles needed to cover the timetabled trips. Then the following relationship holds

∣∣∣C(m−k)
∣∣∣ ≥ k ∀k ∈ {0, 1, 2, · · · ,m}, (1)
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because in order to reduce the number of necessary vehicles by k we need to remove at least k trips

from vehicle scheduling problem. Observation of the pairs
[
k,
∣∣∣C(m−k)

∣∣∣] gives us quick insight into

how many trips we need to handle in order to achieve reduction of k vehicles. Here, quick decision

can be made on reasonable and achievable target for parameter k. Also, we need to realize that we do

not have to stick only to the identified critical trips C(m−k), as there can exist alternative trips with

similar outcome. Within next section, we perform the identification of critical trips alternatives.

3.5 Critical trips alternatives

Based on the evaluation of the size of
∣∣∣C(m−k)

∣∣∣ we select the target value for parameter k. In this

section, we provide further alternatives to the originally identified critical trips C(m−k), as critical

trips can be interchangeable with some of the trips which are included in the m− k shortest disjoint

paths s(m−k)1 , s
(m−k)
2 , . . . s

(m−k)
(m−k).

First, we describe heuristic approach for obtaining some alternatives to critical trips. Then, we pro-

vide an algorithm which yields all the critical trips alternatives.

Heuristic approach for obtaining critical trips alternatives

This heuristic is inspired by genetic algorithms, specifically crossover operator. It swaps critical trips

with trips included in the m− k shortest disjoint paths and examines whether the created schedule is

feasible. In other words, for each critical trip c ∈ C(m−k) we swap it with trip t included in them−k
shortest disjoint paths s(m−k)1 , s

(m−k)
2 , . . . s

(m−k)
(m−k). If swapping yields a feasible schedule, then trip

t is a feasible alternative to the selected critical trip c, as it can be removed instead of the critical trip

c from vehicle scheduling with the same effect. Thus we form set H(m−k), whose elements are sets

H
(m−k)
c , which for each critical trip c ∈ C(m−k) contain trip c and its identified alternatives.

All critical trips alternatives

in order to obtain comprehensive sets containing all the critical trips alternatives, we need to run the

algorithm 1 multiple times with slightly different weights of trips c that are identified as critical or

alternative to critical. Let us denote the total amount of trips within the timetable as T . Then the

weight of trip c is reduced by 1
T+1

, i. e. the cost of the edge [c, c′] is set to time(c′) − time(c) −
1 − 1

T+1
. Within such setup, critical trips are preferred to be chosen to the shortest disjoint paths

over trips that have not been yet identified as alternatives to critical. Having the new set of weights,

we iteratively run algorithm 1 as long as new critical trips alternatives are identified. Thus we form

set A(m−k), whose elements are sets C(m−k) for each of the iterative runs.
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3.6 Critical trips evaluation and handling

Within this section, we suggest the possible ways of critical trips evaluation and handling. For se-

lected handling method, we propose metrics to evaluate critical trips and select the most feasible ones

for handling based on the metrics value. Let us briefly outline the considered handling possibilities

together with the proposed metrics for trips evaluation:

• Rescheduling of the trip to a different time frame

– Uniformity coefficient of a line
∑n−2

k=1
δdkdk+1

n−2
, where δij is Kronecker delta, and se-

quence d1, d2, . . . , dn−1 is the sequence of time differences between consecutive trips

of given line on given day

• Outsourcing

– Price of the outsourced trip

– If price is unavailable, then the overall runtime of the trip

• Trip cancellation

– Average trip occupancy

• Covering of the trip by a backup vehicle and a temp crew

– Backup vehicle and temp crew availability

4 Current results

In this section, we provide the results of a case study, and then within discussion we comment both

on the advancement of the theoretical result within scientific field as well as its benefits for practical

usage. We also comment on the utilizability of the result in multi-depot and multi-vehicle scheduling.

4.1 Case study

Within this case study, we aim to apply the proposed method of critical trips identification, evalua-

tion and handling on timetabled data of public transport company of Liberec and Jablonec nad Nisou.

During the preparation of paper Pastirčáková and Šulc (2018), the proposed algorithms were imple-

mented in C#, see Microsoft Corporation (2018). The same implementation was used to carry out

this case study. The timetabled data are taken for Saturday schedule during winter of 2017, for buses
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only. There is only one bus depot. The bus fleet is heterogenous, however, Saturday schedule re-

quires less than half of the available vehicles and can be fully covered by low-floor buses. Therefore,

without limiting the generality, we treat the schedule as single-vehicle.

There are overall 997 timetabled trips within 28 routes. Figure 4 shows for each time moment within

Saturday the amount of timetabled trips and the necessary amount of vehicles to cover them. The

necessary amount of vehicles is computed by vehicle and crew scheduling system Kastor, see Palúch

and Majer (2017). We can observe in figure 4 that the number of necessary vehicles is almost flat

between 8:30 and 18:30, with a minor peak around 13:00.

Figure 4: Number of trips and necessary vehicles for Saturday timetable4

4Data source: Saturday timetable of public transport company of Liberec and Jablonec nad Nisou

Upon the timetabled data, we run algorithm 1 to obtain the critical trips, and algorithm from section

3.5 to obtain all the alternatives. Figure 5 shows last 9 vehicle schedules after the last run of algorithm

1, i. e. the last 9 shortest disjoint paths s(31)23 , s
(31)
24 , . . . s

(31)
31 . Apparently, the last two critical paths

s
(31)
30 and s(31)31 contain only one trip each. These 2 trips were identified as critical, therefore they are

colored in orange. Algorithm from section 3.5 yielded 3 further alternatives of critical trips, colored

in grey.

Let us denote the critical trips alternatives from figure 5 as a1, a2, a3, a4, a5 (colored in grey and

orange) from top to bottom. Having the full list of critical trips alternatives, trip a5 was proposed by

the subject matter experts to be cancelled right away. It was a trip which was not originally part of

the timetable, but it was added based on a specific requirement of one board member of the transport
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Figure 5: Segment of vehicle schedule for Saturday timetable yielded by algorithm 1 with critical
trips identified in orange and critical trips alternatives in grey5

5Data source: Saturday timetable of public transport company of Liberec and Jablonec nad Nisou

company, who agreed that usage of extra vehicle and crew shift is not reasonable and cost effective

for satisfying the requirement.

Therefore, there were 4 alternatives a1, a2, a3, a4 left for handling of 1 critical trip. The chosen

handling method was trip rescheduling. Based on the value of uniformity coefficient, alternatives

a3 and a4 were selected as candidates for rescheduling, with time window of 15 minutes. The trip

shifting algorithm as per Schmid and Ehmke (2015) found a feasible schedule for alternative a4 with

time shift of −8 minutes, which was considered reasonable for given trip and route. Therefore, trip

a4 was rescheduled by shifting it to an 8 minutes earlier timeframe.

Comparison of vehicle and crew scheduling results before and after critical trips handling is provided

in table 1. By handling 0.2% of trips, we lowered the amount of necessary vehicles by 6.5% and the

amount of crew shifts by 3.4%. Solutions provided by Kastor have as uniform shifts as possible.

Within the original solution, Kastor distributed 997 trips between 31 vehicles and 59 crew shifts,

where the lengths of all crew shifts should be as uniform as possible. By handling 2 trips, it was

possible to cover 996 trips by only 29 vehicles and 57 crew shifts, which stepped up vehicle utilization

as well as the amount of productive time of the crew. After critical trips handling, one vehicle covered

on average 2.1 more trips than before, and one crew shift covered on average 0.6 more trips than

before.

Measure Original count Count after handling
Number of trips 997 996
Number of vehicles 31 29
Number of crew shifts 59 57

Table 1: Results of vehicle and crew scheduling before and after critical trips handling6

6Data source: Saturday timetable of public transport company of Liberec and Jablonec nad Nisou
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4.2 Discussion

In this section we comment both on the advancement of the theoretical result within scientific field

as well as its benefits for practical usage. We also comment on the utilizability of the result in multi-

depot and multi-vehicle scheduling extensions of vehicle scheduling problem.

Using algorithm 1, determine the size of the set of
critical trips for each possible size of reduction

in the amount of necessary vehicles

Yes No

Is it sufficient to examine subset 
of critical trips alternatives?

Run algorithm to obtain set
of all critical trips

alternatives

Based on the information obtained in previous step,
set the target reduction  in the amount of necessary

vehicles

Run heuristic search to
obtain subset of critical trips

alternatives

Based on the selected handling method, evaluate
critical trips alternatives as per section 3.6. Based
on the metrics value, select the trips for handling

Yes

Is sufficient amount 
of critical  trips handled in order 

to reach the target  reduction in  the amount 
of necessary vehicles?

 

End

No

Figure 6: Flowchart summarizing the process behind the proposed optimization7

7Created by the author

Within figure 6, we summarize the process behind the proposed optimization. Based on a thorough

literature review, we can conclude that the proposed optimization is novel and original. In literature,

there is no evidence of setting the target reduction in the amount of necessary vehicles based on the

size of sets of critical trips, together with provision of critical trips alternatives and methods for their

further evaluation and handling.

The proposed optimization as well as all handling methods and their evaluation are designed in the

way to pose the least negative effect on the passenger, while optimizing for the efficiency of resources

utilization. When applied on an existing timetable, proposed optimization may lower the passenger’s

comfort. Even though it is designed in order to lower the passenger’s comfort the least possible, and

to the least possible amount of passengers, indisputably, it still can affect passenger’s comfort. How-

ever, recently due to covid 19 disease many transportation companies implement reduced timetables.
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These reduced timetables can be quickly evaluated by proposed algorithms and optimized to reduce

the necessary amount of vehicles and possibly crew members to cover it. Similarly, when the stan-

dard timetable should be reinstated, the optimized timetable can be published instead.

4.2.1 Discussion on the multi-depot and multi-vehicle extensions

Both multi-depot and multi-vehicle extensions of vehicle scheduling are NP-hard, opposed to the

polynomial complexity of single-depot vehicle scheduling, which we were focusing on within this

work. We keep the problems of multi-depot and multi-vehicle scheduling extensions as open prob-

lems for future research. If the multi-depot or multi-vehicle problem is weakly conditioned, i. e.

there are only few fixed requirements, then if we apply the proposed optimization and run the stan-

dard vehicle scheduling above the resulting timetable, there is high probability that the resulting

savings in number of vehicles would be the same. In general, the probability lowers with more fixed

requirements on the depots.

Furthermore, the proposed algorithm could be used as a part of genetical heuristic for the multi-

depot or multi-vehicle scheduling task. When crossing the vehicle schedules in between the depots

or vehicle types, the proposed algorithm can for each depot give suggestions on which of the tasks

to be accomplished by another depot or vehicle type, so that within given depot or vehicle type, the

tasks are executable by lower amount of vehicles. However, such an algorithm is beyond the scope

of this dissertation and is kept as an open problem for future research.

5 Benefits of the dissertation

During the development of crucial parts of this work, public transport in the Czech Republic was

afflicted by lack of vehicles and crew members, see SDP ČR (2018). Furthermore, the costs posed

on vehicles and crew are generally the two highest costs of a public transport company. Therefore,

the goal of this dissertation is to design an algorithm that enables to lower the amount of necessary

vehicles, resp. crew members.

In this work, we provide overview and analysis of current knowledge in the field of vehicle and crew

scheduling. Having identified a gap within current knowledge, we define goal of the dissertation, i.

e. critical trips identification, evaluation and handling, and we provide the methods of achieving the

goal.

We designed a comprehensive algorithm to identify critical trips to be removed from vehicle schedul-

ing for lowering the number of vehicles necessary, see Pastirčáková and Šulc (2018), and presented

it on a conference WMSCI 2018, where it won prize for the best paper of the session. As a part of
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this algorithm, we evaluate the size of the sets of critical trips, in order to set the target reduction in

the amount of necessary vehicles, and we provide multiple critical trips alternatives.

Taking into account the applicability of the theoretical result in practice, we suggest further steps

for handling the critical trips. We propose measures for critical trips evaluation based on which

the transportation company can easily and quickly compare feasibility of critical trips handling and

select the best alternative for handling, therefore enabling quick decision upon critical trips handling.

We as well provide the evaluation of the impact of critical trips handling on the efficiency of used

resources of a selected public transport company via a case study. We also make suggestions on the

future research possibilities and share the open questions.

Based on a thorough literature review, we can conclude that the proposed optimization is novel and

original. In literature, there is no evidence of setting the target reduction in the amount of necessary

vehicles based on the size of sets of critical trips, together with provision of critical trips alternatives

and methods for their further evaluation and handling.

The proposed optimization as well as all handling methods and their evaluation are designed in the

way to pose the least negative effect on the passenger, while optimizing for the efficiency of resources

utilization. When applied on an existing timetable, proposed optimization may lower the passenger’s

comfort. Even though it is designed in order to lower the passenger’s comfort the least possible, and

to the least possible amount of passengers, indisputably, it still can affect passenger’s comfort.

Currently, due to covid 19 disease and the implemented restrictions which impact public transport

especially by lowering the demand, many transportation companies implement reduced timetables.

These reduced timetables can be quickly evaluated by the proposed method and optimized to reduce

the necessary amount of vehicles and possibly crew members to cover it. Such approach to reduced

timetables is advantageous not only for stepping up the efficiency of used vehicles and crew mem-

bers, but also from the perspective of risk management, especially if some of the crew members get

infected with covid 19 or are quarantined. And the fact that the creation of reduced timetable affects

the passengers regardless any further optimization, it is the right time apply the optimization without

passenger noticing any further change.

To summarize the benefits, the main advantages of finding and handling the critical trips are:

• Lowering the number of vehicles and crew members needed to cover the timetable.

• Increasing the efficiency of the used vehicles and crew.

• Decreasing the amount of drivers necessary for duty rostering.

• Utilization of knowledge of critical set of trips for optimizing the iterative process of time-

tabling→ vehicle scheduling→ timetabling for higher efficiency and lower operating costs.
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Horváth, M. and T. Kis (2017). Computing strong lower and upper bounds for the integrated multiple-

depot vehicle and crew scheduling problem with branch-and-price. Central European Journal of

Operations Research. ISSN: 1613-9178. DOI: 10.1007/s10100-017-0489-4.

Iliopoulou, Ch. and K. Kepaptsoglou (2019). Combining ITS and optimization in public transporta-

tion planning: state of the art and future research paths. European Transport Research Review 11,

pp. 1–16.

Kliewer, N., V. Gintner, and L. Suhl (2006). Line change considerations within a time-space network

based multi-depot bus scheduling model. Proceedings of the Ninth International Workshop on

Computer-Aided Scheduling of Public Transport.

Lamatsch, A. (1992). An approach to vehicle scheduling with depot capacity constraints. Derochers,

M.I Rousseau, J.-M. Pp. 181–195.

Mesquita, M. and J. Paixão (1992). Multiple depot vehicle scheduling problem: A new heuristic

based on quasi-assignment algorithms. Computer-Aided Transit Scheduling. Ed. by Daduna J

and Wren A, pp. 167–180.

Microsoft Corporation (2018). C# language specification. Accessed: 17. 4. 2021. URL: https:

//docs.microsoft.com/dotnet/csharp/language-reference/language-

specification.

Orloff, C. (1976). Route constrained fleet scheduling. Transportation Science 2, pp. 149–168.

Oukil, A. et al. (2007). Stabilized column generation for highly degenerate multiple-depot vehicle

scheduling problems. Computers and Operations Research 34, pp. 817–834.

Paixão, J. and I. Branco (1988). Bus Scheduling with a Fixed Number of Vehicles. Computer-Aided

Transit Scheduling. Ed. by Daduna J and Wren A, pp. 28–40.
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[III] Šulc J. and K. Šulcová. Usage of RAPTOR for travel time minimizing journey planner.

2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI),

Herl’any, Slovakia, pp 419–424, 2021.
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Abstract

Vehicle scheduling problem addresses the task of assigning vehicles to cover all trips in a timetable.

Minimum number of vehicles is determined by the number of trips in the peak hours of demand. In

this work, we propose an approach to detect the minimal set of trips (critical trips), such that omitting

them allows to lower the amount of necessary vehicles. We give overview of the size of the set of

critical trips depending on the value of the target reduction in number of vehicles, in order to select

appropriate target value. We provide methods for critical trips evaluation and handling. In a case

study we show the usage of this algorithm on timetabled data of selected public transport company,

where modification of 2 trips lead to reduction of both necessary vehicles and crew by 2.

Souhrn

Při zoběhovánı́ vozidel pokrýváme množinu všech spojů z jı́zdnı́ho řádu vozidly. Minimálnı́ počet

potřebných vozidel je dán hlavně počtem spojů ve špičce, kdy je hustota spojů nejvyššı́. V této

práci navrhujeme způsob detekce minimálnı́ho počtu spojů (tzv. kritických spojů) takových, že

jejich odebránı́m z úlohy zoběhovánı́ vozidel snı́žı́me počet potřebných vozidel. Určı́me velikost

množiny kritických spojů pro každou hodnotu targetu redukce počtu vozů, vyšetřenı́m čehož zı́skáme

výslednou velikost targetu redukce počtu vozů. Dále poskytujeme metody pro evaluaci a modifikaci

kritických spojů. V case study aplikujeme navržený algoritmus na jı́zdnı́ řád vybraného dopravnı́ho

podniku, kde modifikacı́ 2 spojů došlo ke snı́ženı́ potřebných vozidel i osádek o 2.
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