Skip to main content

Login for students

Login for employees

Publication detail

Drone Propeller Blade Material Optimization Using Modern Computational Method
Authors: Krmela Jan | Bakošová Alžbeta | Krmelová Vladimíra | Sadjiep Tchuigwa Baurice Sylvain
Year: 2021
Type of publication: článek ve sborníku
Name of source: Engineering for Rural Development
Publisher name: Latvia University of Afgriculture
Place: Jelgava
Page from-to: 878-883
Titles:
Language Name Abstract Keywords
cze Optimalizace materiálu listu vrtule dronu pomocí moderní výpočetní metody Článek se zabývá optimalizací materiálu listu vrtule dronu Drone DJI Mavic Pro pomocí moderní výpočetní metody za účelem nalezení vhodného materiálu pro 3D tisk. Pro výpočtové simulace byl použitý ANSYS Discovery Live 2019. SolidWorks 2020 byl použit k vytvoření 3D modelu listu vrtule. Jako vhodné materiály pro list vrtule dronu, které budou vyrobeny 3D tiskem, byly vybrány ABS, PLA, PETG. Byly vytvořeny výpočtové modely. Byly provedeny výpočtové simulace vzletu dronu jako otáčení jedné lopatky v aerodynamickém tunelu s definovanými teplotami a rychlostmi otáčení. Na základě výsledků ze simulací byl pro 3D tisk listu vrtule dronu vybraný materiál PETG. dron; ANSYS Discovery; 3D tisk; PETG
eng Drone Propeller Blade Material Optimization Using Modern Computational Method The paper deals with the optimization of the material of the propeller blade Drone DJI Mavic Pro using a modern computational method in order to find a suitable material for 3D printing. For computational simulation, ANSYS Discovery Live 2019 was used as a modern computational method. SolidWorks 2020 was used to create a 3D model of the propeller blade. ABS, PLA, PETG were selected as suitable materials for the drone propeller blade, which will be produced by 3D printing. One of them was thought that would best meet all requirements. Computational models were made for this purpose. Deformation-stress states were calculated and calculations as “a wind tunnel” were done. It was a simulation of the take-off of a drone as a solution of rotation of one blade in a wind tunnel with defined different temperatures and rotational speeds. The results of these simulations are evaluated. The highest stress values in the blade area were for the ABS material and the lowest for the PLA material. In the area of the propeller legs, which simulate attachment to the drone, the ABS material showed the highest stress values and the PETG material showed the lowest stress values. The largest deformation in the part of the leaf sheets was recorded by the ABS material and the lowest by PLA. The flight and flight conditions simulations were simulated at different temperatures of -2 and + 25 ºC and flight times of 1 and 10 s for each material. Based on the computational results, the PETG material was selected for 3D printing of the drone propeller blade. drone; ANSYS Discovery; 3D print; PETG